
Adafruit Kegomatic
Created by Becky Stern

Last updated on 2015-01-01 04:00:12 PM EST

2
3
5
8

10
15

Guide Contents

Guide Contents
Overview
Bill of Materials
Prototype Circuit
Install Flow Meter
Raspberry Pi Code

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 2 of 21

Overview
The Adafruit Kegomatic is a team project by everyone at Adafruit! We wanted to see how
we could augment a kegerator with cool hardware from the Adafruit store and make it active
online.

Our first experiment was to hook up a liquid flow meter and have the keg tweet every time
someone drinks from it! Follow @AdafruitKegBot (http://adafru.it/cJQ)for updates.

For now the keg has birch beer, but we'll be getting a beer beer kegerator soon and will mod
that one up as well!

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 3 of 21

https://twitter.com/adafruitkegbot

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 4 of 21

Bill of Materials
Adafruit hardware:

Raspberry Pi (http://adafru.it/998)
Liquid flow meter (http://adafru.it/828) (plastic not brass, which could make the tasty
beverage taste funny)
HDMI monitor (http://adafru.it/1033)
Mini wifi module (http://adafru.it/814)
Mini wireless keyboard (http://adafru.it/922)

Other hardware:

Kegco kegerator (http://adafru.it/cJS) or modded fridge
keg of birch beer (better for testing than alcoholic beer!)
2x liquid lines (one to mod and a backup)
small CO2 tank with regulator and air hose
teflon tape
2x barb -> threaded connector that matches interior diameter of the liquid line and
threads on the flow meter
2x hose clamps

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 5 of 21

http://www.adafruit.com/products/998
http://www.adafruit.com/products/828
http://www.adafruit.com/products/1033
http://www.adafruit.com/products/814
http://www.adafruit.com/products/922
http://www.kegco.com/kegerators/index.html

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 6 of 21

Thanks to Snoegoer Co. in Minnesota for making and donating this sweet tap, we'll be
putting it on our next kegerator!

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 7 of 21

Prototype Circuit

You can hook the sensor up to an Arduino using our sample code (http://adafru.it/cJV), or
read on for the Raspberry Pi setup.

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 8 of 21

https://github.com/adafruit/Adafruit-Flow-Meter

Test the flow meter by blowing into it (there's an arrow on the meter to show you the correct
flow direction).

When it's working to your satisfaction, flush it with soapy water to clean it before installing in
your kegbot.

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 9 of 21

Install Flow Meter

It helps to have two liquid tubes, in case you break one but still want to access your beer.
Cut the liquid line with a pair of sharp scissors.

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 10 of 21

Insert the barbed connectors into the cut ends of the tubes and secure with hose clamps.

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 11 of 21

Thread the flow meter into the connectors (don't forget the teflon tape)-- now the liquid will
go through the flow meter!

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 12 of 21

Cut off the flow meter's connector, strip the
three wires inside, and solder on a long
extension for each wire, enough to go from
your keg tube, outside the keg, to the output
display. We made ours about four feet long.

To connect each wire, tin the stripped ends,
then position the two wire ends together and
remelt the solder. Slide on pieces of heat
shrink tubing to insulate the solder joints.

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 13 of 21

http://learn.adafruit.com/assets/10602
http://learn.adafruit.com/assets/12960

Run the extension wires out the back of the fridge so they can be hooked up to the
RasPi/Arduino/system of your choice.

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 14 of 21

Raspberry Pi Code

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 15 of 21

The code for this project is on GitHub.

https://github.com/adafruit/Kegomatic (http://adafru.it/e84)

After you've set up your pi, log in or ssh in, and get ready to set up some stuff. First, we'll
download the kegbot code:

We'll need to install Python's setup tools in order to make it easier to install the pre-
requisites for our Twitter code.

Next, we will install a whole bunch of pre-requisites. Execute these one line at a time and
look for errors. If you don't see any, you're good to go.

And that's it for setup... now the code should work... let's take a look at what it does!

git clone https://github.com/adafruit/Kegomatic.git

sudo -i

wget https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py -O - | python

sudo easy_install twitter

sudo easy_install simplejson

sudo easy_install httplib2

sudo easy_install python-oauth2

#!/usr/bin/python

import os

import time

import math

import pygame, sys

from pygame.locals import *

import RPi.GPIO as GPIO

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 16 of 21

https://github.com/adafruit/Kegomatic

The above lines are all the imports we need... we need the twitter API for twittering, the GPIO
library so we can use the GPIO pins, pygame so we can make this a fun windowed
application, math so we can do some math stuff, time so we can do accurate timing, and os
so we can run things at the os level.

Next, we'll need to initialize the twitter account:

First, go set up a Twitter app here (http://adafru.it/ejM). You will need to be logged in to
Twitter from whatever account you would like to do the kegomatic tweeting.

Then, come back to the code, and replace OAUTH_TOKEN, OAUTH_SECRET,
CONSUMER_KEY, and CONSUMER_SECRET with the actual values from your twitter account
app page.

After that, we will need to initialize the GPIO pins...

The next several lines are there to set up pygame, the windowed context, and various
global variables we will need throughout the program...

from twitter import *

t = Twitter(auth=OAuth(OAUTH_TOKEN, OAUTH_SECRET, CONSUMER_KEY, CONSUMER_SECRET))

boardRevision = GPIO.RPI_REVISION

GPIO.setmode(GPIO.BCM) # use real GPIO numbering

GPIO.setup(22,GPIO.IN, pull_up_down=GPIO.PUD_UP)

set up pygame

pygame.init()

set up the window

VIEW_WIDTH = 0

VIEW_HEIGHT = 0

pygame.display.set_caption('KEGBOT')

set up the flow meter

pouring = False

lastPinState = False

pinState = 0

lastPinChange = int(time.time() * 1000)

pourStart = 0

pinChange = lastPinChange

pinDelta = 0

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 17 of 21

https://apps.twitter.com/app/new

Next comes the renderThings() function, which draws all of our updated data to the screen...

hertz = 0

flow = 0

litersPoured = 0

pintsPoured = 0

tweet = ''

set up the colors

BLACK = (0,0,0)

WHITE = (255,255,255)

windowSurface = pygame.display.set_mode((VIEW_WIDTH,VIEW_HEIGHT), FULLSCREEN, 32)

FONTSIZE = 48

LINEHEIGHT = 52

basicFont = pygame.font.SysFont(None, FONTSIZE)

def renderThings(lastPinChange, pinChange, pinDelta, hertz, flow, pintsPoured, pouring, pourStart, tweet

 # Clear the screen

 windowSurface.fill(BLACK)

 # Draw LastPinChange

 text = basicFont.render('Last Pin Change: '+time.strftime('%H:%M:%S', time.localtime(lastPinChange/

 textRect = text.get_rect()

 windowSurface.blit(text, (40,1*LINEHEIGHT))

 # Draw PinChange

 text = basicFont.render('Pin Change: '+time.strftime('%H:%M:%S', time.localtime(pinChange/1000)),

 textRect = text.get_rect()

 windowSurface.blit(text, (40,2*LINEHEIGHT))

 # Draw PinDelta

 text = basicFont.render('Pin Delta: '+str(pinDelta) + ' ms', True, WHITE, BLACK)

 textRect = text.get_rect()

 windowSurface.blit(text, (40,3*LINEHEIGHT))

 # Draw hertz

 text = basicFont.render('Hertz: '+str(hertz) + 'Hz', True, WHITE, BLACK)

 textRect = text.get_rect()

 windowSurface.blit(text, (40,4*LINEHEIGHT))

 # Draw instantaneous speed

 text = basicFont.render('Flow: '+str(flow) + ' L/sec', True, WHITE, BLACK)

 textRect = text.get_rect()

 windowSurface.blit(text, (40,5*LINEHEIGHT))

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 18 of 21

Now we begin the main loop, which will loop forever (until we quit the program). The first
thing we need to do at the beginning of the loop every time is to figure out how much time
has passed since the last time we ran the loop. To do that, we get need to get the current
time. We also need to know if the pin is set high or low right now, so we can start counting
the time between pulses of the flow meter.

We also have a small amount of keyboard handling code, so that the user can press the
escape key to exit the program.

 # Draw Liters Poured

 text = basicFont.render('Pints Poured: '+str(pintsPoured) + ' pints', True, WHITE, BLACK)

 textRect = text.get_rect()

 windowSurface.blit(text, (40,6*LINEHEIGHT))

 # Draw Pouring

 text = basicFont.render('Pouring: '+str(pouring), True, WHITE, BLACK)

 textRect = text.get_rect()

 windowSurface.blit(text, (40,7*LINEHEIGHT))

 # Draw Pour Start

 text = basicFont.render('Last Pour Started At: '+time.strftime('%H:%M:%S', time.localtime(pourStart/1000

 textRect = text.get_rect()

 windowSurface.blit(text, (40,8*LINEHEIGHT))

 # Draw Tweet

 text = basicFont.render('Tweet: '+str(tweet), True, WHITE, BLACK)

 textRect = text.get_rect()

 windowSurface.blit(text, (40,9*LINEHEIGHT))

 # Display everything

 pygame.display.flip()

main loop

while True:

 currentTime = int(time.time() * 1000)

 if GPIO.input(22):

 pinState = True

 else:

 pinState = False

Handle keyboard events

 for event in pygame.event.get():

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 19 of 21

Now, this next if statement is a doozie, so bear with me...

If the pin state is high and is not the same as it was last time through the loop (so that the pin
staying high doesn't result in a steady stream of clicks as the loop runs over and over) then
we enter pouring mode. While in pouring mode, we figure out how much time has passed
between this click and the last click of the flow meter, and use that to calculate the flow.
Once we have the number of milliseconds between the last click and now, we can figure out
the hertz of the meter, divide that by the rate expected of the flow meter to get 1 liter per
second of flow, and convert the result from liters to pints. This (very small) number
represents the amount of beer that has been poured during this time through the loop.

This next if statement is a little shorter... it says that if we are pouring, and we notice that our
sensor has been idle for more than 3 seconds, then we can assume that we are no longer
pouring, and it's time to calculate how big the pour was and tweet it. After we do that, we
should reset the amount poured so the next guy can begin his pour.

 if event.type == QUIT or (event.type == KEYUP and event.key == K_ESCAPE):

 pygame.quit()

 sys.exit()

If we have changed pin states low to high...

 if(pinState != lastPinState and pinState == True):

 if(pouring == False):

 pourStart = currentTime

 pouring = True

 # get the current time

 pinChange = currentTime

 pinDelta = pinChange - lastPinChange

 if (pinDelta < 1000):

 # calculate the instantaneous speed

 hertz = 1000.0000 / pinDelta

 flow = hertz / (60 * 7.5) # L/s

 litersPoured += flow * (pinDelta / 1000.0000)

 pintsPoured = litersPoured * 2.11338

if (pouring == True and pinState == lastPinState and (currentTime - lastPinChange) > 3000):

 # set pouring back to false, tweet the current amt poured, and reset everything

 pouring = False

 if (pintsPoured > 0.1):

 pourTime = int((currentTime - pourStart)/1000) - 3

 tweet = 'Someone just poured ' + str(round(pintsPoured,2)) + ' pints of root beer in ' + str(pourTime

 t.statuses.update(status=tweet)

 litersPoured = 0

 pintsPoured = 0

© Adafruit Industries https://learn.adafruit.com/adafruit-keg-bot Page 20 of 21

Finally, we must draw everything to the screen, and update the time variables so that we can
accurately measure time the next time we go through the loop.

To run this code, run the following:

That should bring up a window with the bot statistics, and then you can start pouring and
tweeting!

 renderThings(lastPinChange, pinChange, pinDelta, hertz, flow, pintsPoured, pouring, pourStart, tweet, windowSurface

 lastPinChange = pinChange

 lastPinState = pinState

sudo python kegbot.py

© Adafruit Industries Last Updated: 2015-01-01 04:00:14 PM EST Page 21 of 21

	Guide Contents
	Overview
	Bill of Materials
	Prototype Circuit
	Install Flow Meter
	Raspberry Pi Code

