ERM 10W Series

10 Watts DC/DC Converter

Total Power: 10 Watts **Input Voltage:** 9 to 36Vdc

18 to 75Vdc 40 to 160Vdc

of Outputs: Single, Dual

Special Features

- Industrial Standard 2"x1" Package
- Ultra-wide Input Voltage Range
- · Fully Regulated Output Voltage
- I/O Isolation 3000Vac with Reinforced Insulation
- Operating Temp. Range -40 °C to +95°C
- No Minimum Load Requirement
- Overload Voltage and Short Circuit Protection
- Designed-in Conducted EMI meets EN55032/22 Class A & FCC Level A
- Vibration and Shock meets EN61373
- Cooling, Dry & Damp Heat Test meet IEC/EN60068-2-1.2.30
- Fire Protection Test meets EN45545-2
- Railway EMC Standard meets EN50121-3-2

Safety

UL/cUL/IEC/EN62368-1 (60950-1) CE Mark Railway Certified meets EN50155 (IEC60571)

Product Descriptions

The ERM 10W series is a new range of high performance 10W isolated dc-dc converter within encapsulated 2"x1" package which specifically design for railway applications. There are 18 models available for railway input voltage of either 24 (9~36) Vdc or 48 (18~75) Vdc or 72/110 (40~160) Vdc and tight output voltage regulation. Further features include over current, over voltage, short circuit protection, remote ON/OFF, output trim and EMI filter meets EN55032/22 & FCC Part15 Class A as well.

ERM 10W series conform to vibration and thermal shock test meets EN61373, cooling, dry and damp heat test meets IEC/EN 60068-2-1,2,30 and railway EMC standard EN50121-3-2 and complies also with Railway Certification EN50155 (IEC60571).

ERM 10W series offer an highly reliable solution for critical applications in railway systems, battery-powered equipment, measure instrumentation and many critical applications.

Model Numbers

Model	Input Voltage	Output Voltage	Maximum Load	Efficiency
ERM02A18	9-36Vdc	5Vdc	2.0A	84%
ERM00B18	9-36Vdc	12Vdc	0.835A	86%
ERM00C18	9-36Vdc	15Vdc	0.67A	87%
ERM00H18	9-36Vdc	24Vdc	0.417A	88%
ERM00BB18	9-36Vdc	±12Vdc	0.417A	86%
ERM00CC18	9-36Vdc	±15Vdc	0.335A	87%
ERM02A18B1	9-36Vdc	5Vdc	2.0A	84%
ERM00B18B	9-36Vdc	12Vdc	0.835A	86%
ERM00C18B	9-36Vdc	15Vdc	0.67A	87%
ERM00H18B	9-36Vdc	24Vdc	0.417A	88%
ERM00BB18B	9-36Vdc	±12Vdc	0.417A	86%
ERM00CC18B	9-36Vdc	±15Vdc	0.335A	87%
ERM02A36	18-75Vdc	5Vdc	2.0A	85%
ERM00B36	18-75Vdc	12Vdc	0.83A	87%
ERM00C36	18-75Vdc	15Vdc	0.67A	87%
ERM00H36	18-75Vdc	24Vdc	0.417A	86%
ERM00BB36	18-75Vdc	±12Vdc	0.417A	89%
ERM00CC36	18-75Vdc	±15Vdc	0.335A	88%
ERM02A36B	18-75Vdc	5Vdc	2.0A	85%
ERM00B36B	18-75Vdc	12Vdc	0.83A	87%
ERM00C36B	18-75Vdc	15Vdc	0.67A	87%
ERM00H36B	18-75Vdc	24Vdc	0.417A	86%
ERM00BB36B	18-75Vdc	±12Vdc	0.417A	89%
ERM00CC36B	18-75Vdc	±15Vdc	0.335A	88%

Model Numbers

Model	Input Voltage	Output Voltage	Maximum Load	Efficiency
ERM02A110	40-160Vdc	5Vdc	2.0A	82%
ERM00B110	40-160Vdc	12Vdc	0.83A	85%
ERM00C110	40-160Vdc	15Vdc	0.67A	85%
ERM00H110	40-160Vdc	24Vdc	0.417A	85%
ERM00BB110	40-160Vdc	±12Vdc	0.417A	86%
ERM00CC110	40-160Vdc	±15Vdc	0.335A	86%
ERM02A110B	40-160Vdc	5Vdc	2.0A	82%
ERM00B110B	40-160Vdc	12Vdc	0.83A	85%
ERM00C110B	40-160Vdc	15Vdc	0.67A	85%
ERM00H110B	40-160Vdc	24Vdc	0.417A	85%
ERM00BB110B	40-160Vdc	±12Vdc	0.417A	86%
ERM00CC110B	40-160Vdc	±15Vdc	0.335A	86%

Note1 - Suffix "B" means baseplate, see mechanical drawing on page 45.

Options

None

Electrical Specifications

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Surge Voltage 100 mSec.ma	24V Input Models 48V Input Models 110V Input Models	V _{IN,DC}	-0.7 -0.7 -0.7	- - -	50 100 170	Vdc Vdc Vdc
Maximum Output Power	All models	P _{O,max}	-	-	10	W
Isolation Voltage Input to output (60 seconds Input / Output to Case (60 seconds			3000 1500	1 1	- -	Vac Vac
Isolation Resistance (500Vdd	All models		1000	-	-	Mohm
Isolation Capacitance (100KHz, 1V) All models		-	1500	-	pF
Operating Case Temperature	All models	T _{CASE}	-	-	+105	°С
Storage Temperature	All models	T _{STG}	-50		+125	°C
Humidity (non-condensing) Operatin Non-operatin	- I		-	-	95 95	% %
MTBF	MIL-HDBK- 217F@25 ^O C, Ground Benign		2845385	1	-	Hours

Input Specifications

Table 2. Input Specifications:

Parameter		Condition	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, DC	24V Input Models 48V Input Models 110V Input Models	All	V _{IN,DC}	9 18 40	24 48 110	36 75 160	Vdc Vdc Vdc
Start-Up Threshold Voltage	24V Input Models 48V Input Models 110V Input Models	All	V _{IN,ON}	- - -	- - -	9 18 40	Vdc Vdc Vdc
Under Voltage Lockout	24V Input Models 48V Input Models 110V Input Models	All	V _{IN,OFF}	- - -	7.5 16 37	- - -	Vdc Vdc Vdc
Input Current	ERM02A18 ERM00B18 ERM00C18 ERM00H18 ERM00BB18 ERM00CC18 ERM02A36 ERM00B36 ERM00B36 ERM00C36 ERM00H36 ERM00B110 ERM00B110 ERM00C110 ERM00H110 ERM00B110 ERM00B110 ERM00B110	$V_{IN,DC} = V_{IN,nom}$	I _{IN,full} load	- - - - - - - - - - - - - -	496 485 481 474 485 481 245 240 241 242 234 238 111 107 107 107 106 106	- - - - - - - - - - - -	mA m
Efficiency @Max. Load	ERM02A18 ERM00B18 ERM00C18 ERM00H18 ERM00BB18 ERM00CC18 ERM00B36 ERM00C36 ERM00H36 ERM00B36 ERM00B36 ERM00C110 ERM00B110 ERM00H110 ERM00BB110 ERM00BB110 ERM00BB110 ERM00BB110	V _{IN,DC} =V _{IN,nom} I _O =I _O , _{max} T _A =25 ^O C	η	- - - - - - - - - - - - - - - - - - -	84 86 87 88 86 87 85 87 87 86 89 88 82 85 85 85 86 86		% % % % % % % % %

Technical Reference Note

Rev.12.08.17_#1.1 ERM 10W Series Page 6

Input Specifications

Table 2. Input Specifications con't:

Parameter		Condition	Symbol	Min	Тур	Max	Unit
No Load Input Current (V _O On, I _O = 0A)	24V Input Models 48V Input Models 110V Input Models	$V_{IN,DC} = V_{IN,nom}$	I _{IN,no_load}	- - -	25 15 10	- - -	mA mA mA
Start Up Time (Power On)	All Models	$V_{IN,DC} = V_{IN,nom}$		-	50	-	mSec
Input Filter		All	Internal Pi Type				

Output Specifications

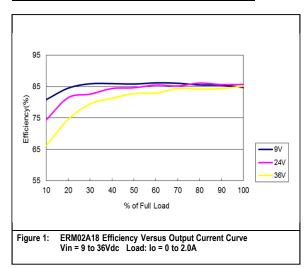
Table 3: Output Specifications

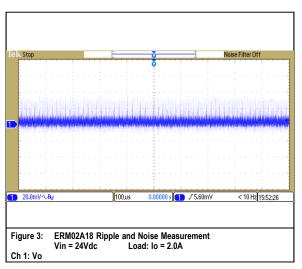
Parameter		Condition	Symbol	Min	Тур	Max	Unit
Output Voltage Set P	oint	V _{IN,DC} =V _{IN,nom} I _O =I _O , _{max} ,T _A =25 °C	±Vο	-	-	1.0	%
Line Regulation		V _{IN,DC} =V _{IN,min} to V _{IN,max}	±%V _O	-	-	0.2	%
Load Regulation							
-	Single Output Dual Output	$I_{O}=I_{O,min}$ to $I_{O,max}$	±%V _O	-	- -	0.5 0.1	% %
Output Current	ERM02A18 ERM00B18 ERM00C18 ERM00H18 ERM00BB18 ERM00CC18 ERM02A36 ERM00B36 ERM00B36 ERM00C36 ERM00B36 ERM00B110 ERM00C110 ERM00C110 ERM00B110 ERM00B110 ERM00B110 ERM00C110	All ¹	I _O	-	- - - - - - - - - - - - -	2000 835 670 417 ±417 ±335 2000 835 670 417 ±417 ±335 2000 835 670 417 ±417 ±335	mA mA mA mA mA mA mA mA mA mA mA mA
Load Capacitance	ERM02A18 ERM00B18 ERM00C18 ERM00H18 ERM00CC18 ERM02A36 ERM02A36 ERM00B36 ERM00C36 ERM00C36 ERM00H36 ERM00B36 ERM00C110 ERM00B110 ERM00C110 ERM00H110 ERM00B110 ERM00C110	All	Co	-	-	2200 330 220 100 150 ² 2200 330 220 100 150 ² 2200 330 220 100 ² 2200 100 ² 100 ²	

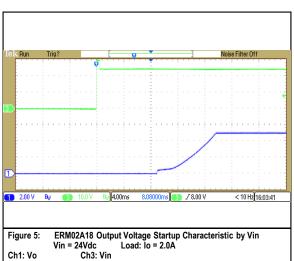
Note 1 - No minimum Load Requirement

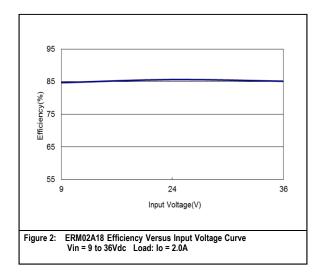
Note 2 - For each output

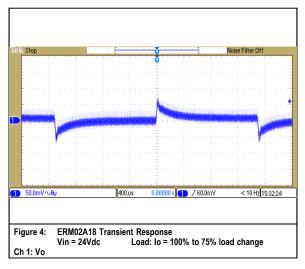
Output Specifications

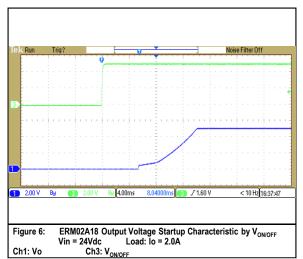

Table 3: Output Specifications con't

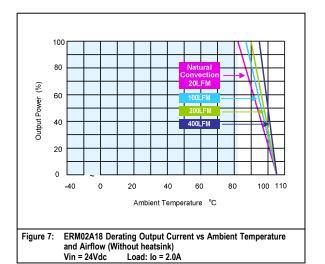

Parameter		Condition	Symbol	Min	Тур	Max	Unit
Ripple & Noise, pk-pk	5V Output Models 12V Output Models 15V Output Models ±12V Output Models ±15V Output Models	0 to 20MHz bandwidth Measure with a 10uF/25V MLCC	Vo	- - - -	50 100 100 100 100	- - - -	mV
	24V Output Models	0 to 20MHz bandwidth Measure with a 4.7uF/50V MLCC	Vo	-	150	-	mV
V _O Dynamic Respons	se Peak Deviation Recovery Time ³	25% load change	±%V _O ±%V _{SB}	- -	3 -	5 300	% uSec
Switching Frequency		All	f _{sw}	-	280	-	KHz
Trim Up / Down Rang	je ⁴	% of Nominal Output Voltage		-	-	±10	%
Output Over Current	Protection	All	%I _{O,max}	- 150 - %		%	
Output Short Circuit F	Protection	All		Hiccup	Mode 0.3F Reco	Iz type, A	utomatic
Over Voltage Protection	ERM02A18 ERM00B18 ERM00C18 ERM00H18 ERM00CC18 ERM00CC18 ERM02A36 ERM00B36 ERM00C36 ERM00H36 ERM00H36 ERM00B36 ERM00C110 ERM00B110 ERM00C110 ERM00B110 ERM00B110 ERM00C110	All	V _o	-	$\begin{array}{c} 6.2 \\ 15 \\ 18 \\ 30 \\ \pm 18 \\ 6.2 \\ 15 \\ 18 \\ 30 \\ \pm 18 \\ 6.2 \\ 15 \\ 18 \\ 30 \\ \pm 15 \\ 18 \\ 30 \\ \pm 15 \\ 18 \\ 30 \\ \pm 18 \\ \end{array}$	-	Vdc

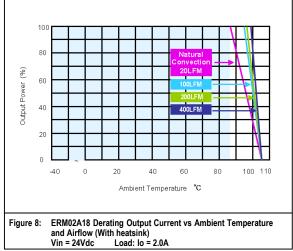

Note 3 - Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.

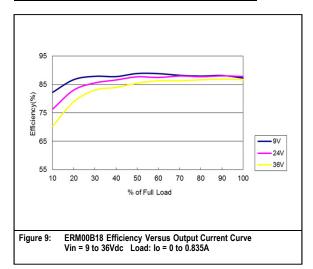

Note 4 - See details on page 55.

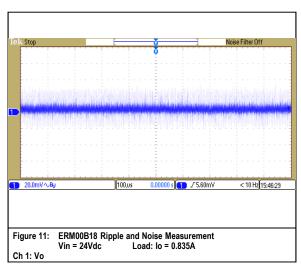

ERM02A18 Performance Curves

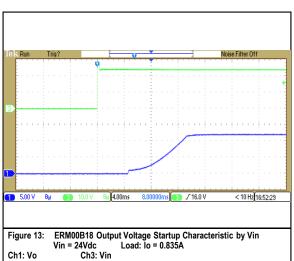


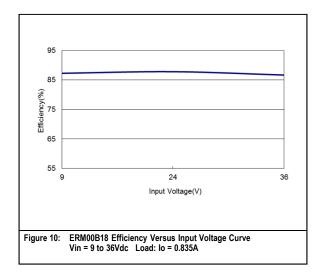


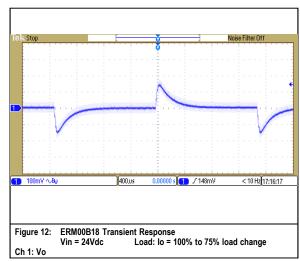


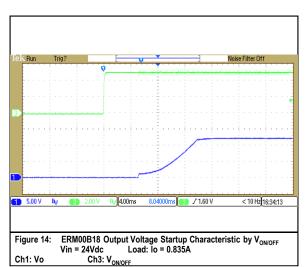


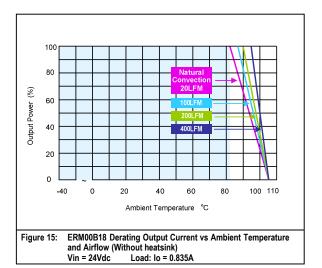

ERM02A18 Performance Curves

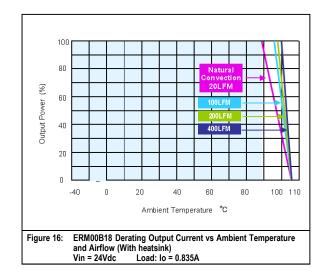


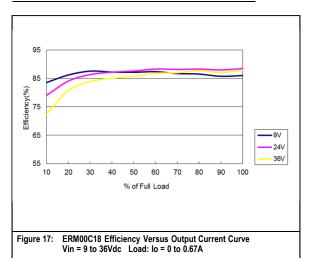


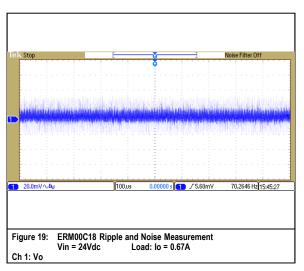

ERM00B18 Performance Curves

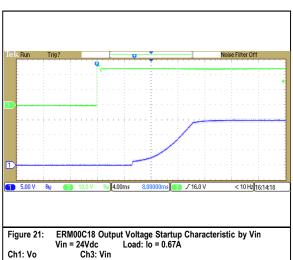


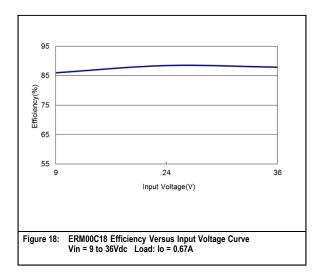


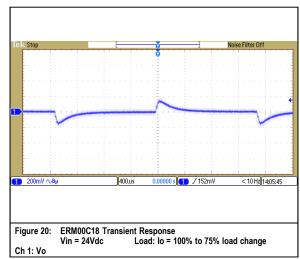


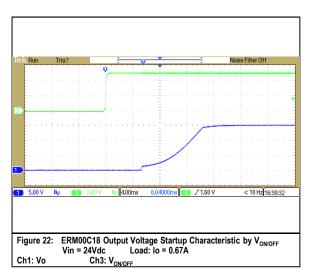


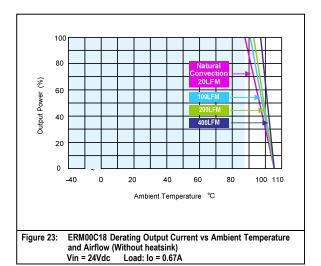

ERM00B18 Performance Curves

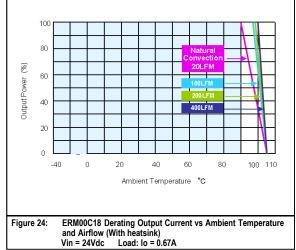


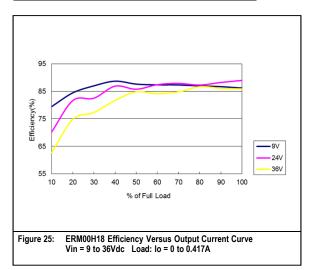


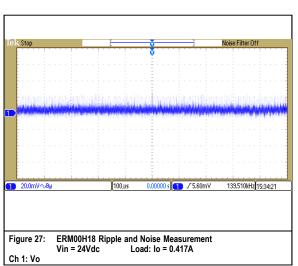

ERM00C18 Performance Curves

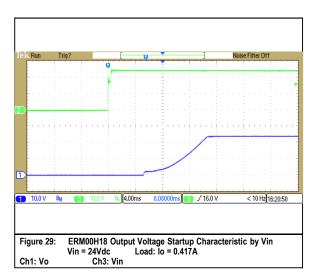


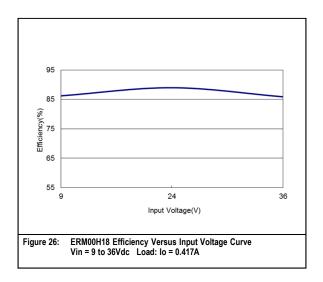


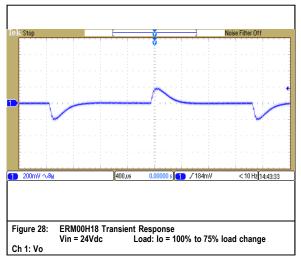


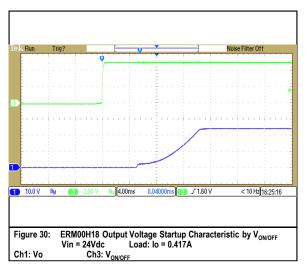


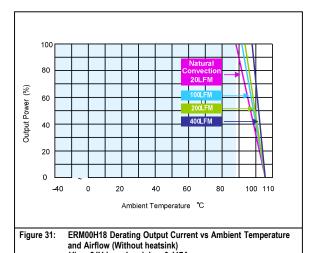

ERM00C18 Performance Curves

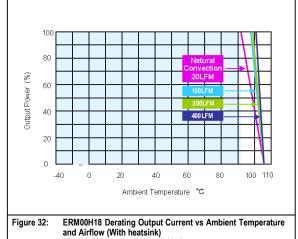


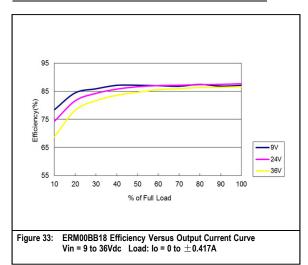


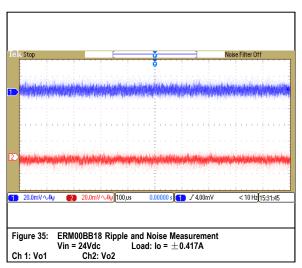

ERM00H18 Performance Curves

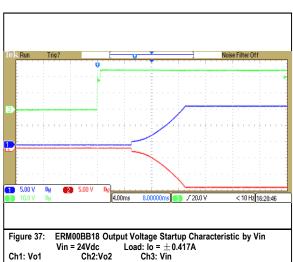


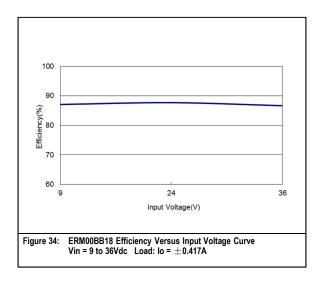


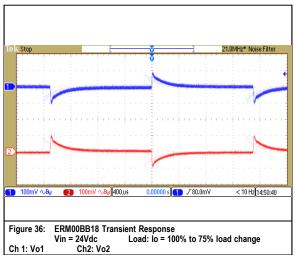


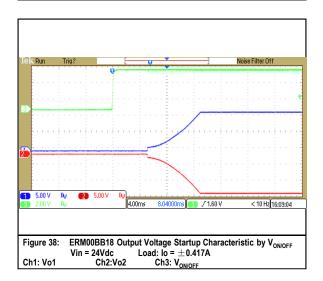


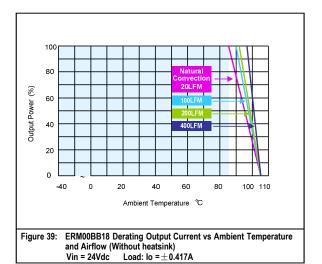

ERM00H18 Performance Curves

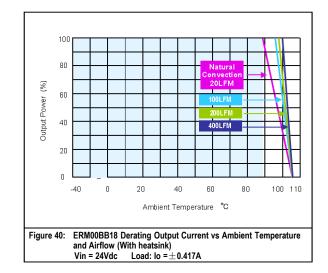


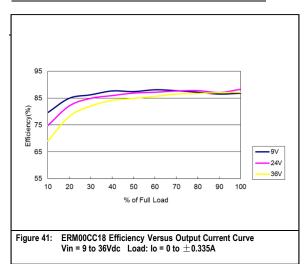


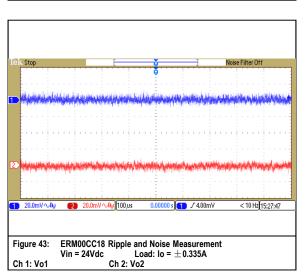

ERM00BB18 Performance Curves

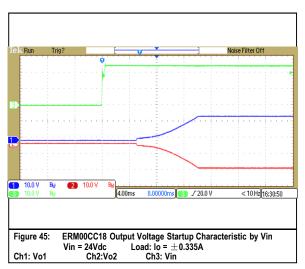


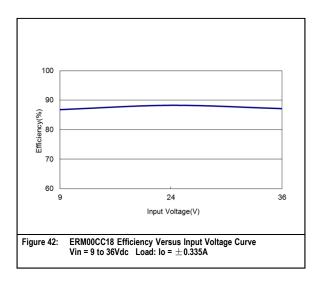


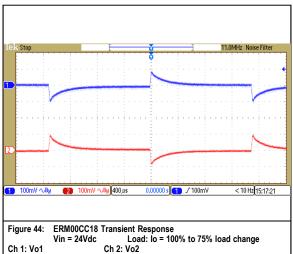


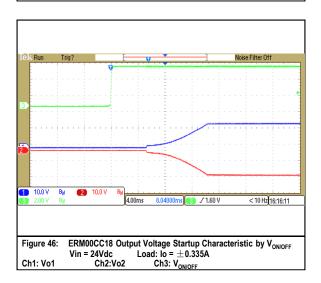


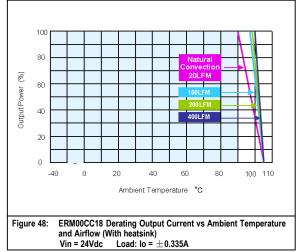

ERM00BB18 Performance Curves

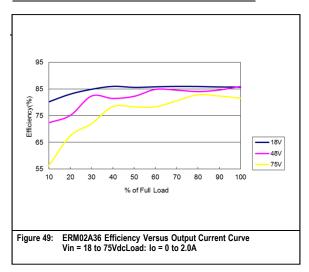


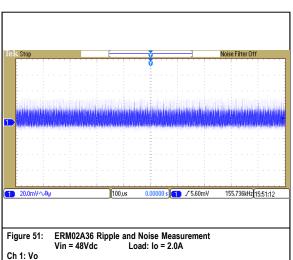


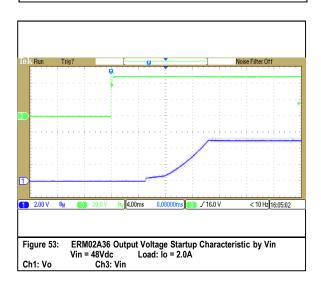

ERM00CC18 Performance Curves

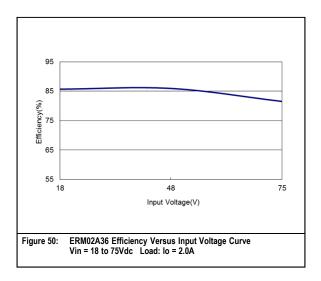


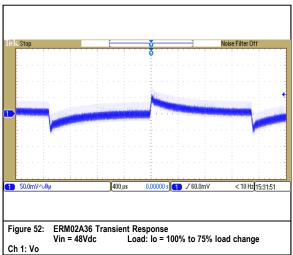


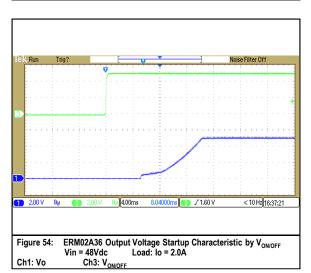


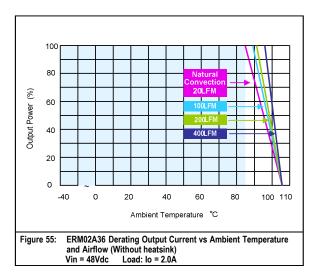

ERM00CC18 Performance Curves

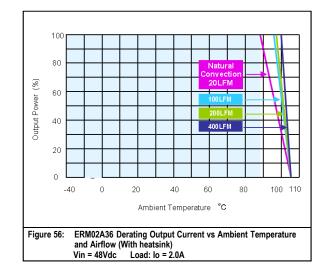


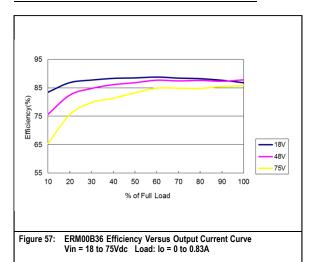


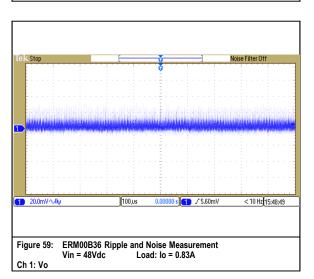

ERM02A36 Performance Curves

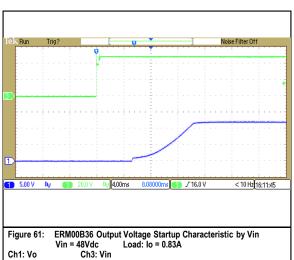


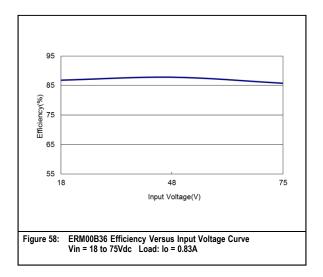


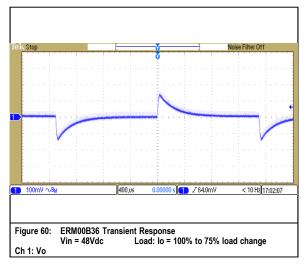


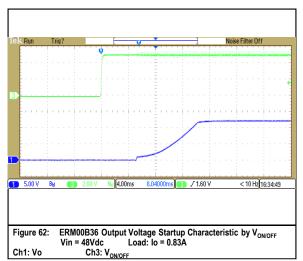


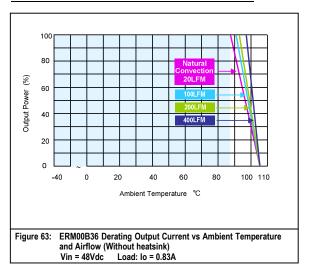

ERM02A36 Performance Curves

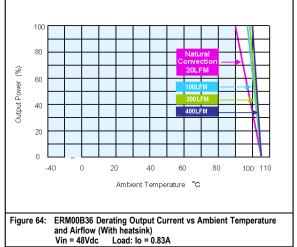


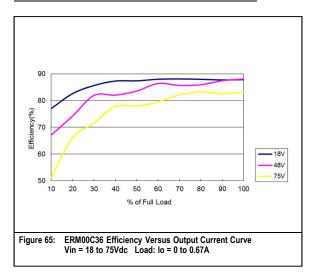


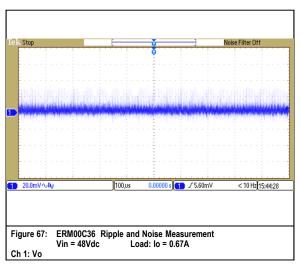

ERM00B36 Performance Curves

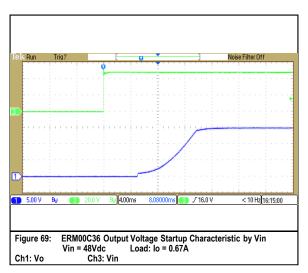


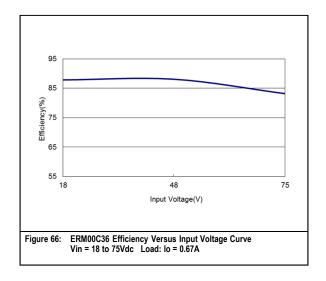


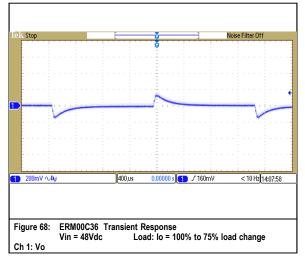


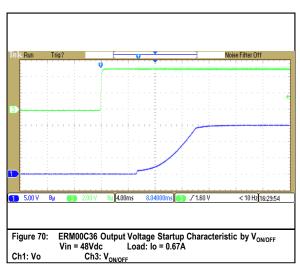


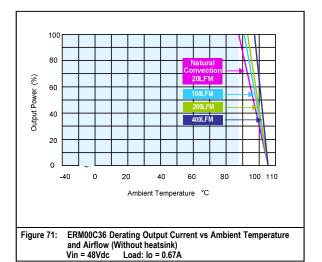

ERM00B36 Performance Curves

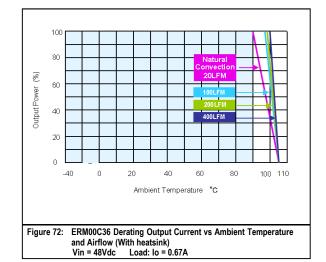


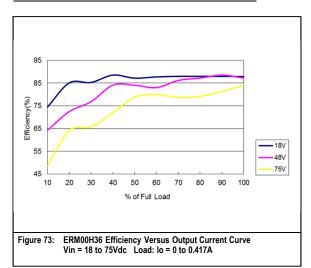


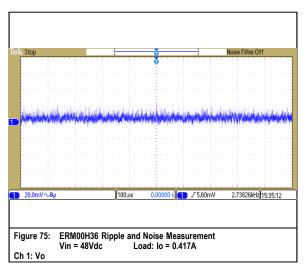

ERM00C36 Performance Curves

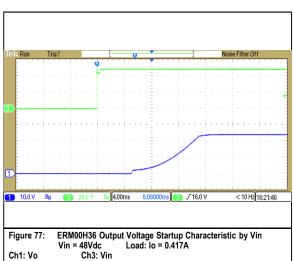


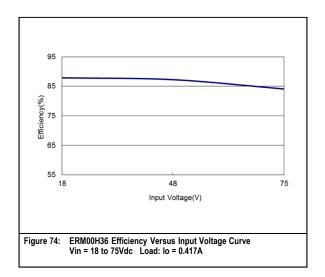


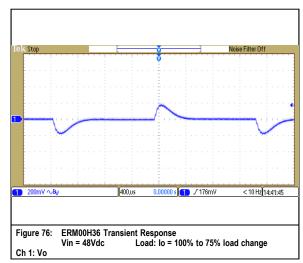


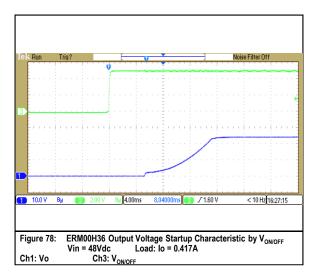


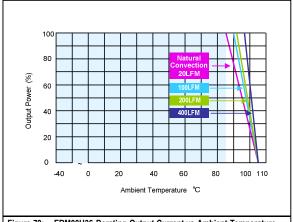

ERM00C36 Performance Curves

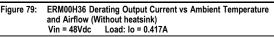




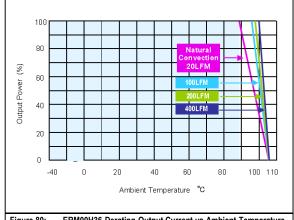
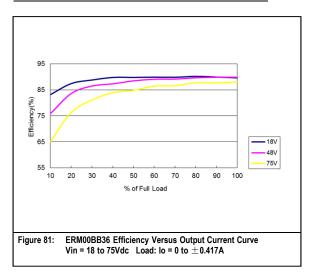
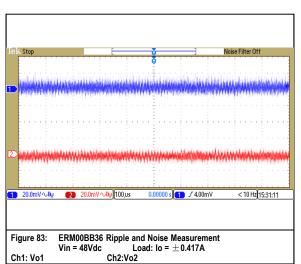
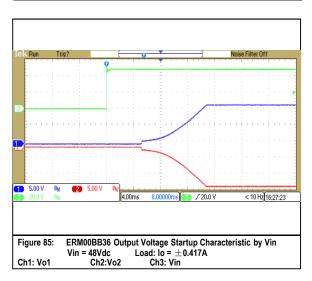

ERM00H36 Performance Curves

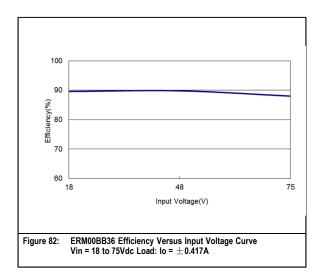


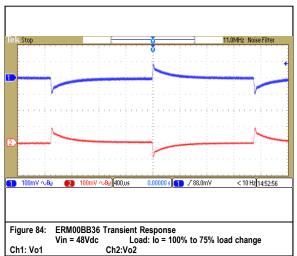


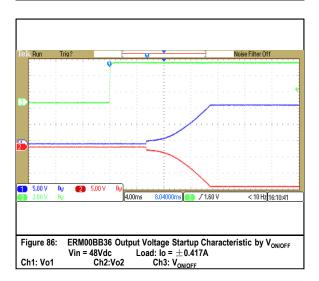


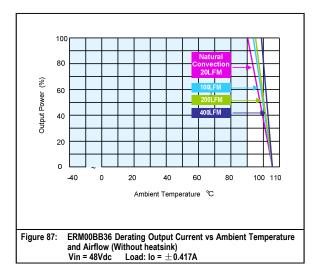
ERM00H36 Performance Curves

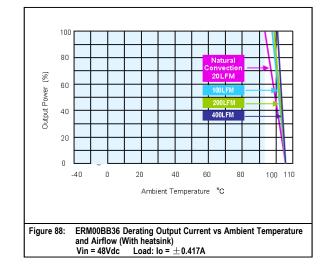





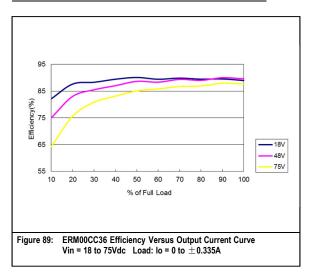

Figure 80: ERM00H36 Derating Output Current vs Ambient Temperature and Airflow (With heatsink)
Vin = 48Vdc Load: lo = 0.417A

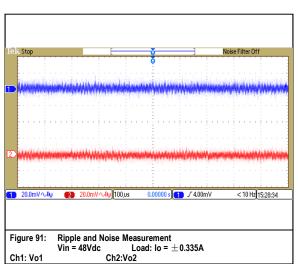

ERM00BB36 Performance Curves

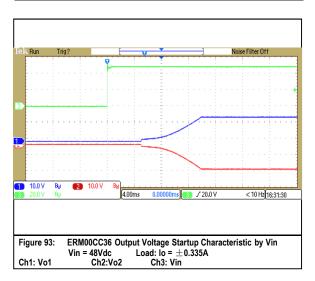


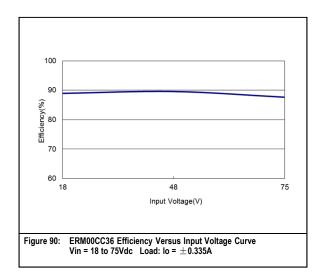


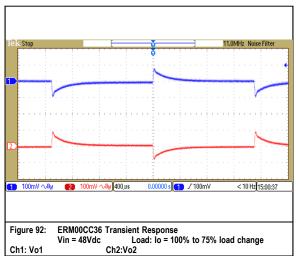


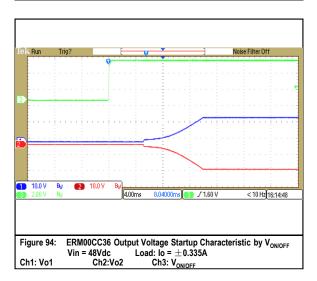


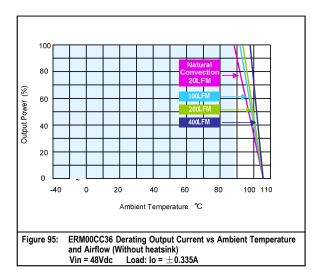

ERM00BB36 Performance Curves

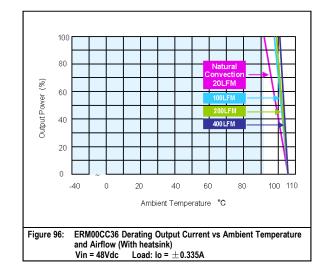


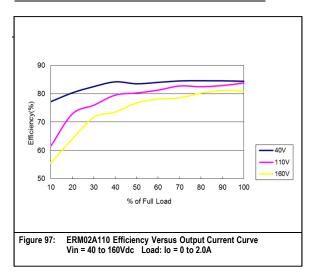


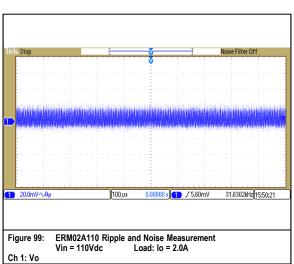

ERM00CC36 Performance Curves

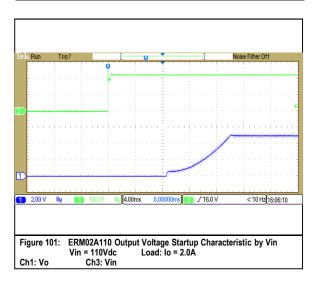


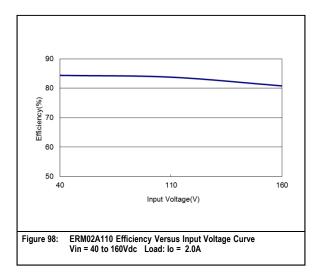


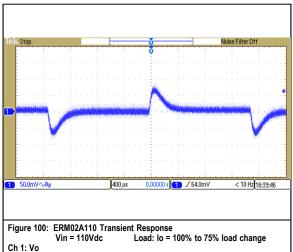


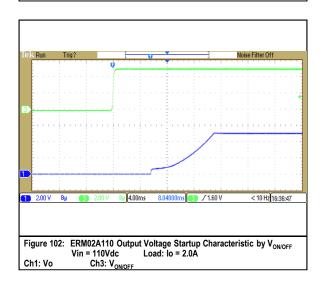


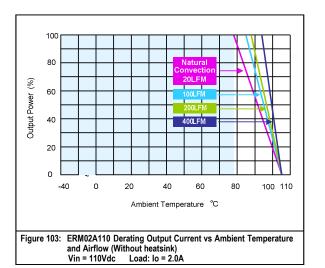

ERM00CC36 Performance Curves

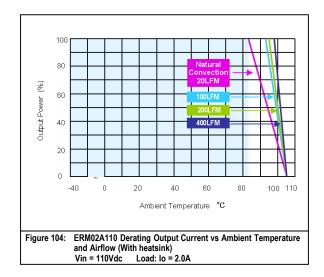


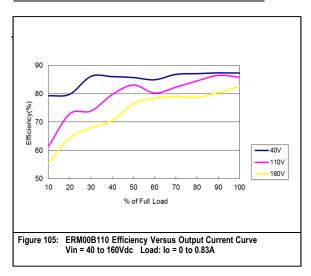


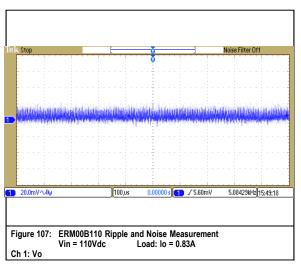

ERM02A110 Performance Curves

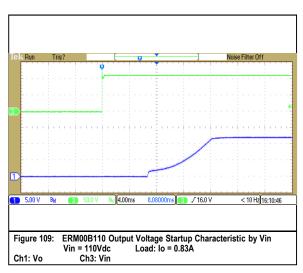


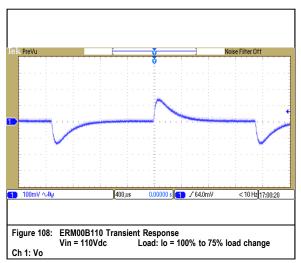


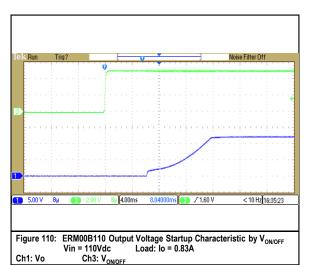


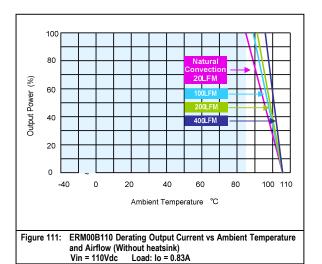


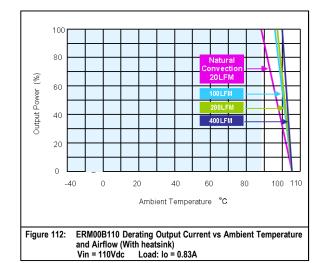

ERM02A110 Performance Curves

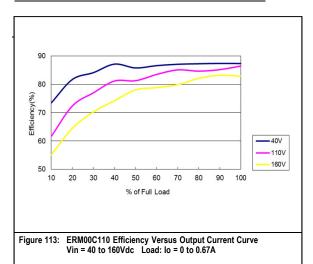


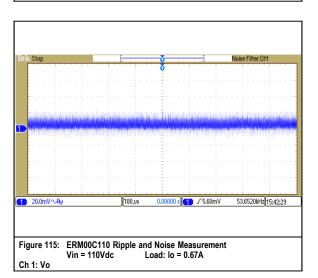

ERM00B110 Performance Curves

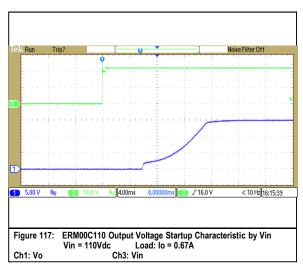


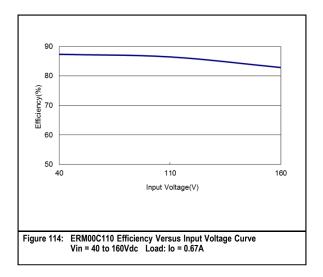


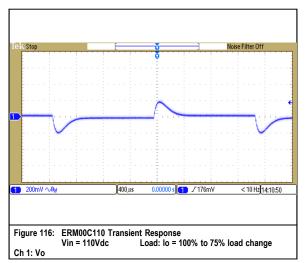


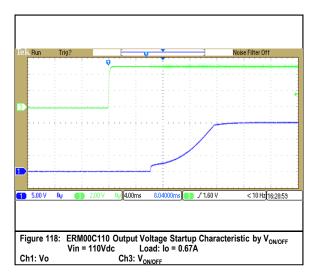


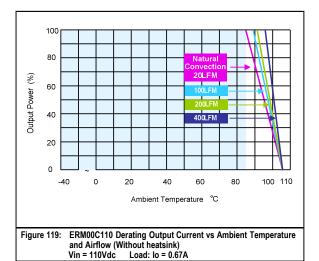

ERM00B110 Performance Curves

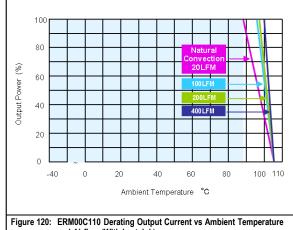


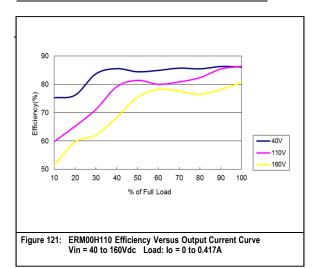


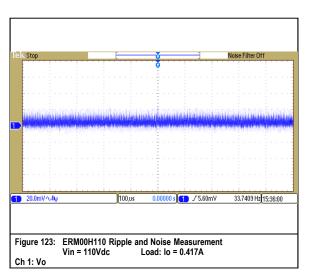

ERM00C110 Performance Curves

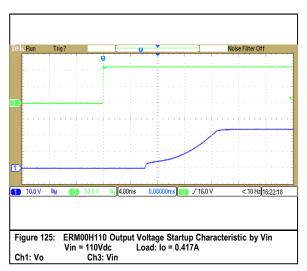




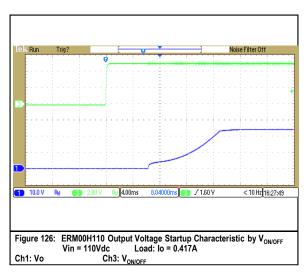


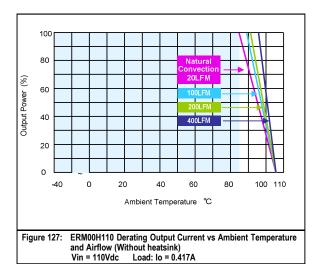


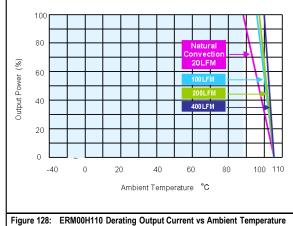

ERM00C110 Performance Curves

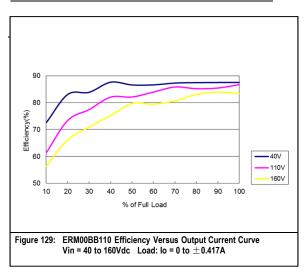


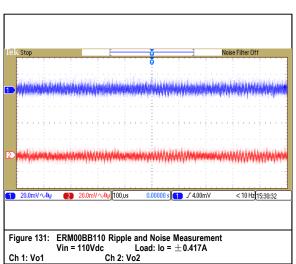
ERM00H110 Performance Curves

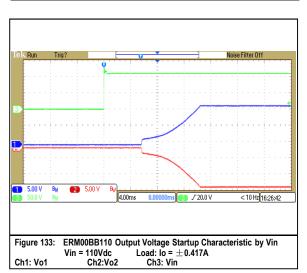


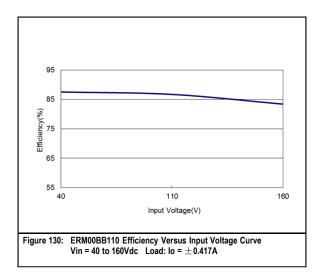


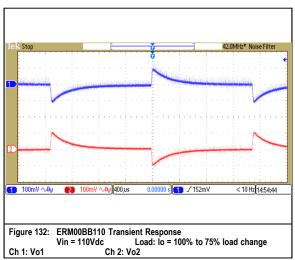


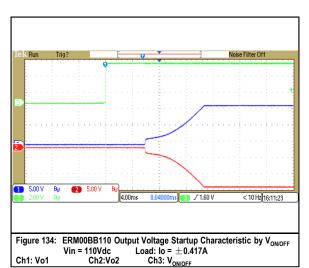


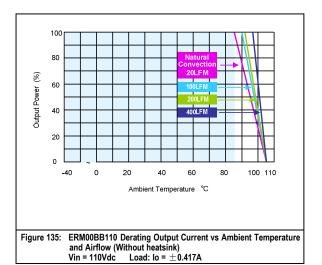

ERM00H110 Performance Curves

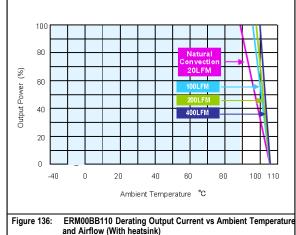


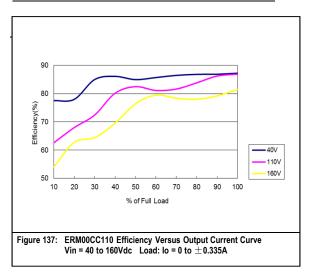


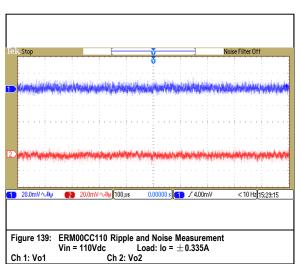

ERM00BB110 Performance Curves

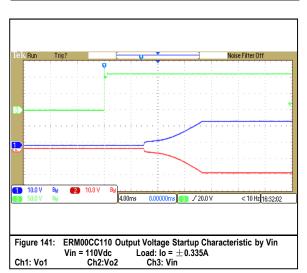


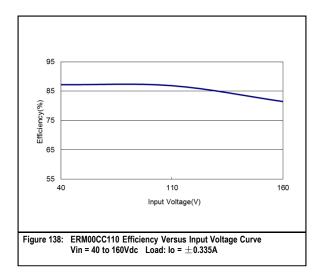


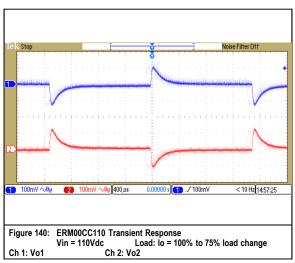


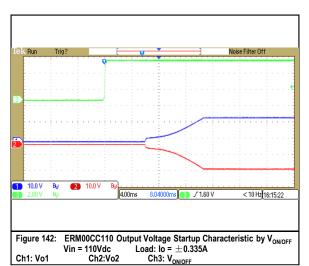


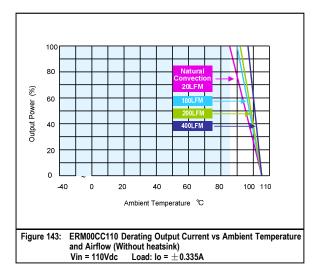

ERM00BB110 Performance Curves

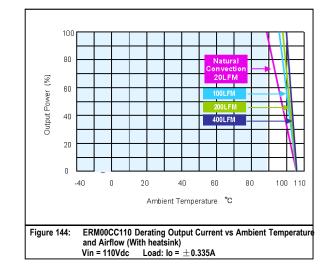




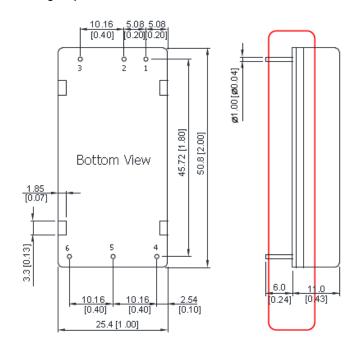

ERM00CC110 Performance Curves







ERM00CC110 Performance Curves



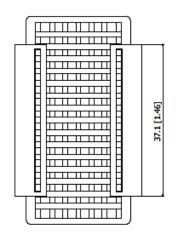
Mechanical Specifications

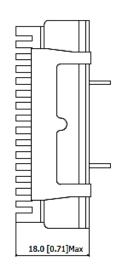
Mechanical Outlines - Without Heatsink

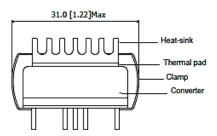
Package Specifications

Pin Connections										
Pin	Single Output	Dual Output								
1	+Vin	+Vin								
2	-Vin	-Vin								
3	Remote On/Off	Remote On/Off								
4	+Vout	+Vout								
5	Trim	Common								
6	-Vout	-Vout								

Note:


1.All dimensions in mm (inches)


2.Tolerance: X.X±0.75 (X.XX±0.03)


 $X.XX\pm0.25$ ($X.XXX\pm0.01$)

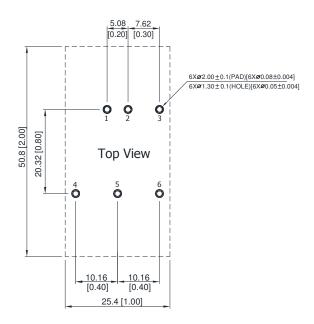
3.Pin diameter: $1.0 \pm 0.05 (0.04 \pm 0.002)$

Mechanical Outlines - With Heatsink("B Suffix")

Note:

- 1.All dimensions in mm (inches)
- 2.Tolerance: $X.X\pm0.75$ ($X.XX\pm0.03$)
 - $X.XX \pm 0.25$ ($X.XXX \pm 0.01$)
- 3.Pin diameter $1.0\pm0.05~(0.04\pm0.002)$

Physical Characteristics							
Heatsink Size	37.1x31.0x18.0 mm (1.46x1.22x0.71 inches)						
Heatsink Material	Aluminum						
Finish	Black Anodized coating						
Weight	9.0g						


The advantages of adding a heatsink are:

- 1. To improve heat dissipation and increase the stability and reliability of the DC/DC converters at high operating temperatures.
- 2. To increase Operating temperature of the DC/DC converter, please refer to Derating Curve.

Physical Characteristics

Physical Characteristics							
Case Size 50.8x25.4x11.0mm (2.0x1.0x0.43 inches)							
Case Material	Red Copper, Powder Coating						
Base Material FR4 PCB (flammability to UL 94V-0 rated)							
Insulated Frame Material	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)						
Pin Material	Tinned Copper						
Potting Material	Epoxy (flammability to UL 94V-0 rated)						
Weight	40.5g						

Recommended Pad Layout for Single & Dual Output Converter

Environmental Specifications

EMC Immunity

ERM 10W series power supply is designed to meet the following EMC immunity specifications.

Table 4. EMC Specifications:

Parameter		Standards & Level	Performance	
General	Comp	liance with EN 50121-3-2 Railway Applications		
EMI	Conduction	Class A		
	EN55024			
	ESD	EN61000-4-2 Air \pm 8kV, Contact \pm 6kV	Criteria A	
	Radiated immunity	EN61000-4-3 10V/m	Gniena A	
EMS	Fast transient ⁴	EN61000-4-4 ±2KV	Criteria A	
	Surge ⁴	EN61000-4-5 ±1KV	Criteria A	
	Conducted immunity	EN61000-4-6 10Vrms	Criteria A	
	PFMF	EN61000-4-8 3A/M	Criteria A	

- Note 1 Specifications typical at Ta=+25 °C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- Note 2 We recommend to protect the converter by a slow blow fuse in the input supply line.
- Note 3 Other input and output voltage may be available, please contact factory.
- Note 4 To meet EN61000-4-4 & EN61000-4-5 an external capacitor across the input pins is required.

Suggested capacitor: 24XXX: CHEMI-CON KY Series 390µF/63V.

48XXX: CHEMI-CON KY Series 330µF/100V.

110XXX: CHEMI-CON KXG Series 220µF/250V.

- Note 5 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- Note 6 Specifications are subject to change without notice.

Technical Reference Note

Rev.12.08.17_#1.1 ERM 10W Series Page 49

Safety Certifications

The ERM 10W series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 5. Safety Certifications for ERM 10W series power supply system

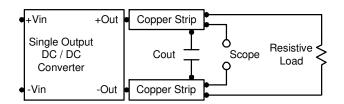
Document	Description
cUL/UL 60950-1(UL certificate)	US and Canada Requirements
IEC/EN 60950-1(CB-scheme)	European Requirements(All CENELEC Countries)
cUL/UL 62368-1(UL certificate)	US Requirements
IEC/EN 62368-1(CB-scheme)	European Requirements(All CENELEC Countries)
CE Mark	

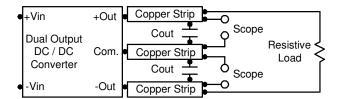
Operating Temperature

Table 6. Operating Temperature:

			М	ах	
Parameter	Model / Condition	Min	Without Heatsink	With Heatsink	Unit
	ERM00BB36		90	93	
	ERM00H18 ERM00CC36		88	92	
On another Architect Terror and the December	ERM00C18 ERM00B36 ERM00B36 ERM00CC18		87	90	
Operating Ambient Temperature Range Natural Convection Nominal Vin, Load 100% Inom. (for Power Derating see relative Derating Curves)	ERM00B18 ERM00H36 ERM00BB18 ERM00BB110 ERM00CC110	-40	85	89	oC
	ERM02A36 ERM00B110 ERM00C110 ERM00H110		84	88	
	ERM02A18		82	86	
	ERM02A110		78	83	
	Natural Convection without Heatsink	12.1	-		
	Natural Convection with Heatsink	9.8	-		
	100LFM Convection without Heatsink	9.2		-	
The way of twee endows a	100LFM Convection with Heatsink	5.4		-	°C/W
Thermal Impedance	200LFM Convection without Heatsink	7.8	-		°C/ VV
	200LFM Convection with Heatsink	4.5		-	
	400LFM Convection without Heatsink	5.2		-	
	400LFM Convection with Heatsink	3.0	-		
Case Temperature	All	-	+1	05	οС
Storage Temperature Range	All	-50	+1	25	οС
Lead Temperature	All	-	2	60	οС
Operating Case Temperature	All	-	+	95	οС

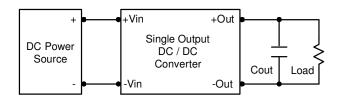
MTBF and Reliability

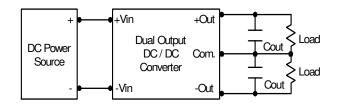

The MTBF of ERM 10W series of DC/DC converters has been calculated using MIL-HDBK 217F NOTICE2, Operating Temperature 25 $^{\circ}$ C, Ground Benign.


Model	MTBF	Unit
ERM02A18	3,283,987	
ERM00B18	3,801,659	
ERM00C18	4,022,109	
ERM00H18	4,096,482	
ERM00BB18	3,538,719	
ERM00CC18	3,755,590	
ERM02A36	3,477,271	
ERM00B36	3,752,189	
ERM00C36	3,869,348	Hours
ERM00H36	3,787,775	Hours
ERM00BB36	4,002,475	
ERM00CC36	3,892,750	
ERM02A110	2,845,385	
ERM00B110	3,480,116	
ERM00C110	3,634,513	
ERM00H110	3,616,570	
ERM00BB110	3,694,350	
ERM00CC110	3,574,791	

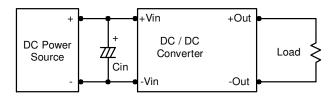
Application Notes

Peak-to-Peak Output Noise Measurement Test


Use a 1µF ceramic capacitor and a 10µF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.



Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.

Input Source Impedance

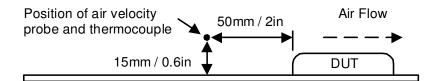
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of 4.7μ F for the 24V input devices, a 2.2μ F for the 48V devices and a 1μ F for the 110V devices.

Output Over Current Protection

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Output Over Voltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals.

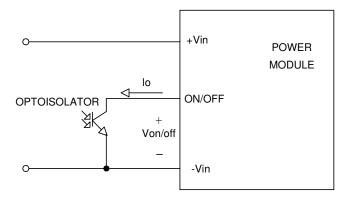

The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in Table 3.

Maximum Capacitive Load

The ERM 10W series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in Table 3.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.


Remote On/Off

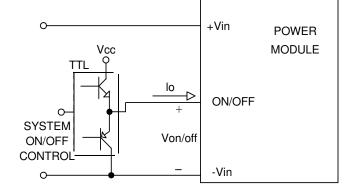
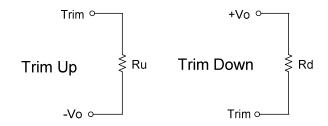

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100µA.

Table 7. Remote On/Off Control:

Parameter	Condition	Min	Тур	Max	Unit			
Converter On	3.5V ~ 12V or Open Circuit							
Converter Off	0V ~ 1.2V or Short Circuit							
Control Input Current (on)	Vctrl = 5.0V		0.5		mA			
Control Input Current (off)	Vctrl = 0V0.5 mA							
Control Common	Refe	ut						
Standby Input Current	Nominal Vin		2.5		mA			

The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.



Isolated-Closure Remote ON/OFF

Level Control Using TTL Output

External Output Trimming

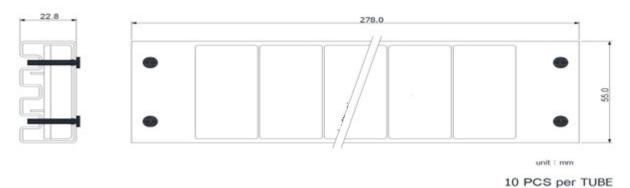
Output can be externally trimmed by using the method shown below.

ERM02AXX Trim Table 8

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	137.88	61.93	36.61	23.95	16.35	11.29	7.67	4.96	2.85	1.16	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Volts
Ru=	108.09	48.39	28.49	18.54	12.56	8.58	5.74	3.61	1.95	0.62	KOhm

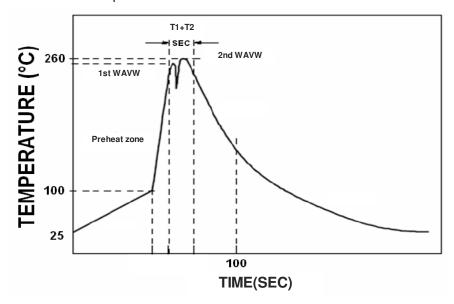
ERM00BXX Trim Table 9

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	419.81	187.68	110.30	71.61	48.40	32.93	21.87	13.58	7.13	1.98	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc
Ru=	344.74	154.37	90.92	59.19	40.15	27.46	18.39	11.59	6.31	2.07	KOhm


ERM00CXX Trim Table 10

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	602.92	269.91	158.91	103.41	70.10	47.90	32.05	20.15	10.90	3.50	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc
Ru=	482.88	215.89	126.89	82.40	55.70	37.90	25.18	15.65	8.23	2.30	KOhm

ERM00HXX Trim Table 11


Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	598.97	267.93	157.59	102.42	69.31	47.25	31.48	19.66	10.46	3.11	Kohm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc
Ru=	486.83	217.87	128.21	83.38	56.49	38.56	25.75	16.14	8.67	2.69	KOhm

Packaging Information

Soldering and Reflow Considerations

Lead free wave solder profile for ERM 10W Series

Zone	Reference Parameter
Preheat zone	Rise temp speed: 3°C/sec max.
	Preheat temp : 100~130°C
Actual heating	Peak temp: 250~260°C Peak Time
	Peak time(T1+T2): 4~6 sec

Reference Solder: Sn-Ag-Cu: Sn-Cu: Sn-Ag Hand Welding: Soldering iron: Power 60W

Welding Time: 2~4 sec Temp.: 380~400 °C

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	05.01.2017	First Issue	K. Zou
1.1	12.08.2017	Update the isolation voltage	A. Zhang

WORLDWIDE OFFICES

Americas

2900 S.Diablo Way Tempe, AZ 85282 USA +1 888 412 7832

Europe (UK)

Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX United Kingdom +44 (0) 1384 842 211

Asia (HK)

14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong +852 2176 3333

www.artesyn.com

For more information: www.artesyn.com/power For support: productsupport.ep@artesyn.com