LA6324N

Monolithic Linear IC

High-Performance **Quad Operational Amplifier**

http://onsemi.com

Overview

The LA6324 consists of four independent, high-performance, internally phase compensated operational amplifiers that are designed to operate from a single power supply over a wide range of voltages. These four operational amplifiers are packaged in a single package. As in case of conventional general-purpose operational amplifiers, operation from dual power supplies is also possible and the power dissipation is low. It can be applied to various uses in commercial and industrial equipment including all types of transducer amplifiers and DC amplifiers.

Features

- No phase compensation required
- Wide operating voltage range:
 - 3.0 V to 30.0 V (single supply)
 - $\pm 1.5 \text{ V to } \pm 15.0 \text{ V (dual supplies)}$
- Highly resistant to dielectric breakdown
- Input voltage range includes the neighborhood of GND level and output voltage range V_{OUT} is from 0 to V_{CC} –1.5 V.
- Small current dissipation:

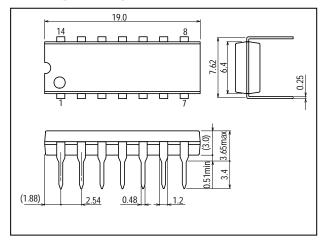
 $I_{CC} = 0.6 \text{ mA typ/V}_{CC} = +5 \text{ V}, R_L = \infty$

Specitications

Absolute Maximum Ratings at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum Supply voltage	V _{CC} max		32	V
Differential input voltage	V _{ID}		32	V
Maximum input voltage	V _{IN} max		-0.3 to +32	V
Allowable power dissipation	Pd max	LA6324N	720	mW
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

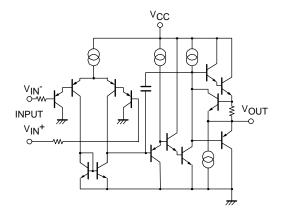

Operating Characteristics at $Ta=25~^{\circ}C,\ V_{CC}=+5~V$

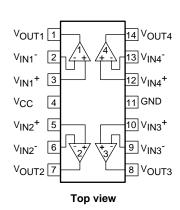
Parameter	Symbol	Conditions	Test circuit	Ratings			Unit
				min	typ	max	Unit
Input offset voltage	V _{IO}		1		±2	±7	mV
Input offset current	IIO	I _{IN} (+) / I _{IN} (–)	2		±5	±50	nA
Input bias current	IB	I _{IN} (+) / I _{IN} (–)	3		45	250	nA
Common-mode input voltage range	VICM		4	0		V _{CC} -1.5	V
Common-mode rejection ratio	CMR		4	65	80		dB
Voltage gain	VG	$V_{CC} = 15 \text{ V}, \text{ R}_{L} \ge 2 \text{ k}\Omega$	5	25	100		V/mV
Output voltage range	Vout			0		V _{CC} -1.5	V
Supply voltage rejection ratio	SVR		6	65	100		dB
Channel separation	CS	f = 1 k to 20 kHz	7		120		dB
Current drain	^I cc		8		0.6	2	mA
	lcc	V _{CC} = 30 V	8		1.5	3	mA
Output current (Source)	I _O source	$V_{1N}^{+} = 1 \text{ V}, V_{1N}^{-} = 0 \text{ V}$	9	20	40		mA
Output current (Sink)	I _O sink	$V_{IN}^{+} = 0 \text{ V}, V_{IN}^{-} = 1 \text{ V}$	10	10	20		mA

Package Dimensions

unit: mm

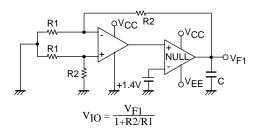
3003B [LA6324N]

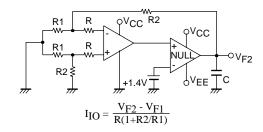



Equivalent Circuit

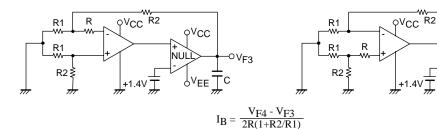
Pin Assignment

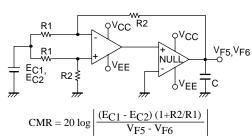
(LA6324N)

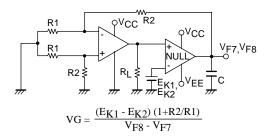

(1 unit)

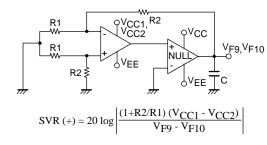


Test Circuit

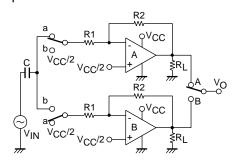

1. Input offset voltage VIO


2. Input offset current I_{IO}


3. Input bias current IB


4. Common-mode rejection ratio CMR Common-mode input voltage range V_{ICM}

5. Voltage gain VG



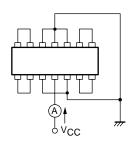
6. Supply voltage rejection ratio SVR

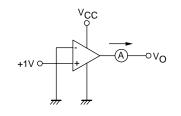
$$SVR(-) = 20 log \left| \frac{(1+R2/R1) (V_{EE1} - V_{EE2})}{V_{F11} - V_{F12}} \right|$$

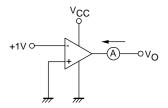
7. Channel separation CS

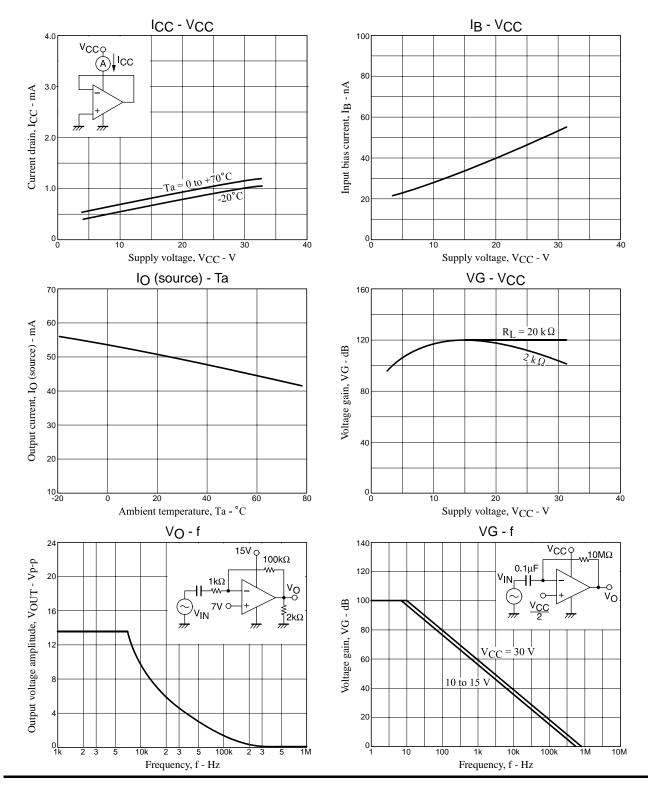
SW: a
$$CS(A \rightarrow B) = 20 \log \frac{R2 V_{OA}}{R1 V_{OB}}$$

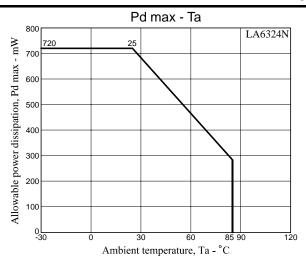
SW: b

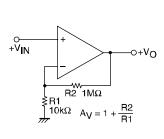

$$CS(B\rightarrow A) = 20 \log \frac{R2 V_{OB}}{R1 V_{OA}}$$

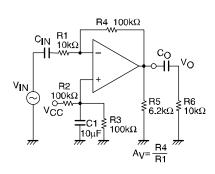

These apply also to other channels.

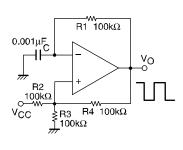

8. Current drain I_{CC}


9. Output current IO source


10. Output current IO sink




Sample Application Circuits


Noninverting DC amplifier

Rectangular wave oscillator

Inverting AC amplifier

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa