

HEXFRED® Ultrafast Diodes, 300 A (INT-A-PAK Power Modules)

INT-A-PAK

PRODUCT SUMMARY						
V _R	1200 V					
V _F (typical) at 300 A at 25 °C	2.18 V					
t _{rr} (typical) at 45 A	233 ns					
I _{F(DC)} at T _C	300 A at 60 °C					
Package	INT-A-PAK					
Circuit	Single diode					

FEATURES

· Electrically isolated: DCB base plate

• Standard JEDEC® package

· Simplified mechanical designs, rapid assembly

COMPLIAN

- High surge capability
- · Large creepage distances
- Case style INT-A-PAK
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

REMARKS

- Product reliability results valid for $T_J = 150~^{\circ}C$
- Recommended operation temperature T_{op} = 150 °C

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Cathode to anode voltage	V_R		1200	V		
Continuous forward current	_	T _C = 25 °C	375	А		
	IF	T _C = 60 °C	300			
Single pulse forward current	I _{FSM}	T _J = 25 °C	2400			
Maximum power dissipation	В	T _C = 25 °C	1040	W		
	P _D	T _C = 60 °C	750			
RMS isolation voltage	V _{ISOL}	50 Hz, circuit to base, all terminal shorted, t = 1 s	3500	V		
Junction temperature range	TJ		-40 to +150	°C		
Storage temperature range	T _{Stg}		-40 to +150			

ELECTRICAL SPECIFICATIONS PER LEG (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Cathode to anode breakdown voltage	V_{BR}	I _R = 500 μA	1200	-	-		
Maximum forward voltage	V_{FM}	I _F = 300 A	-	2.18	2.23	V	
		$I_F = 300 \text{ A}, T_J = 150 \text{ °C}$	-	2.24	2.47		
Maximum reverse leakage current	I _{RM}	V _R = 1200 V	-	0.06	0.2	mA	
		$T_J = 150 ^{\circ}\text{C}, V_R = 1200 \text{V}$	-	-	20		

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Diode reverse recovery charge	Q _{rr}	T _J = 25 °C	$I_F = 45 \text{ A}$ $V_R = 400 \text{ V}$ $dI_F/dt = 500 \text{ A/}\mu\text{s}$	-	3.5	-	μC
		T _J = 125 °C		-	10.4	-	
Reverse recovery time	t _{rr}	T _J = 25 °C		-	233	-	ns
		T _J = 125 °C		-	396	-	
Reverse recovery current	I _{rr}	T _J = 25 °C		-	30	-	А
		T _J = 125 °C		-	53	-	

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum internal thermal resistance, junction to case per leg		R_{thJC}	DC operation 0.12		°C/W		
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.05	C/VV		
Mounting torque ± 10 %	to heatsink		A mounting compound is recommended and the torque should be rechecked after a period of 3 hours	4	Nm		
	busbar		to allow for the spread of the compound.	6	INIII		
Approximate weight				200	g		
				7.1	oz.		
Case style				New INT	-A-PAK		

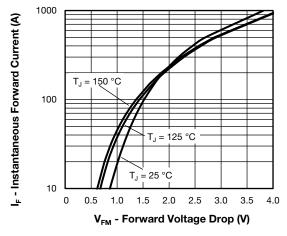


Fig. 1 - Typical Forward Voltage Drop Characteristics

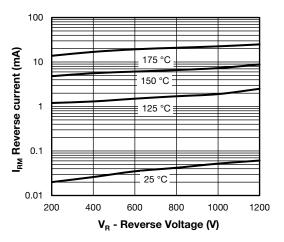


Fig. 2 - Typical Value of Reverse Current vs. Reverse Voltage

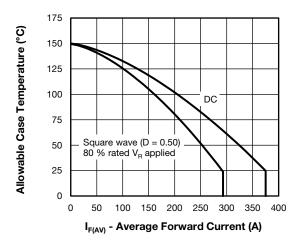


Fig. 3 - Maximum Allowable Case Temperature vs. Average Forward Current

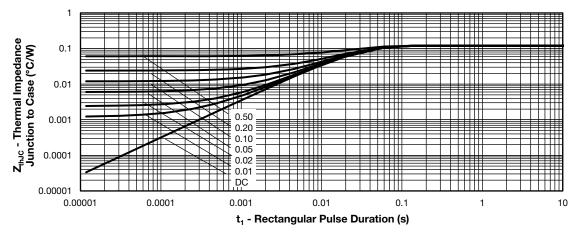


Fig. 4 - Maximum Thermal Impedance RthJC Characteristics

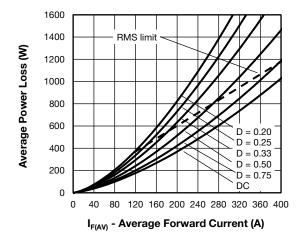


Fig. 5 - Forward Power Loss Characteristics

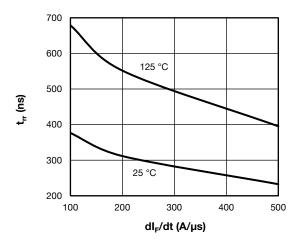
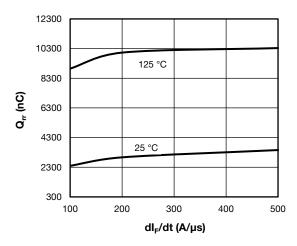



Fig. 6 - Typical Reverse Recovery Time vs. dI_F/dt

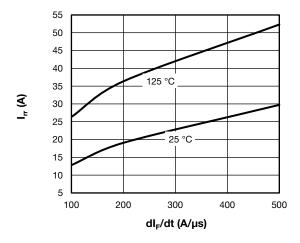
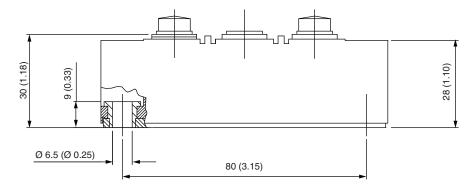
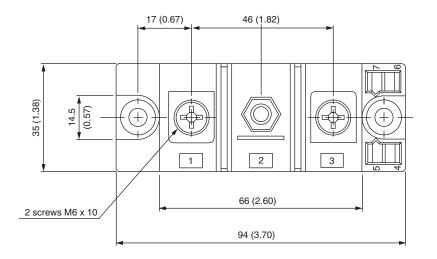


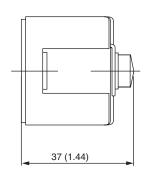
Fig. 8 - Typical Reverse Recovery Current vs. dl_F/dt

ORDERING INFORMATION TABLE

Device code


- 1 Vishay Semiconductors product
- KE = circuit configuration
- U = ultrafast diode
- 4 Current rating 300 = 300 A
- Voltage rating (12 = 1200 V)
- 6 PbF = lead (Pb)-free


CIRCUIT CONFIGURATION



DIMENSIONS in (inches) millimeters **INT-A-PAK DBC**

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.